Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point. (a) (5, 3π/2) (x, y) = (b) (3 2 , π/4) (x, y) = (c) (−1, −π/6) (x, y)

Respuesta :

Answer:

[tex]A)(5,\frac{3\pi}{2})=(0,-5)\:B)(\frac{3}{2} , \frac{\pi}{4} ) \Rightarrow (\frac{3\sqrt{2}}{4} ,\frac{3\sqrt{2}}{4} )\:C)(-1,\frac{\pi}{6})= (\frac{\sqrt{3}}{2},\frac{1}{2})[/tex]

Step-by-step explanation:

1) Check the Polar Coordinates on the graph.

2) A polar coordinate is given in [tex](r,\theta)[/tex] Let's transform each polar coordinate into Cartesian one. Considering:

A)

[tex]x=rcos\theta\\y=rsin\theta\\[/tex]

[tex]A) (5,\frac{3\pi}{2})\\cos(\theta)=\frac{x}{5}\\cos(\frac{3\pi}{2})=\frac{x}{5}\:Cross\: Multiplying\\x=5 cos(\frac{3\pi}{2})\\x =5 cos(0)\:x=0\\sin(\frac{3\pi}{2})=\frac{y}{5}\\y=5sin(-1)\\y=-5\\(0,-5)[/tex]

B) (b) (3/2 , π/4)

[tex]B) (\frac{3}{2},\frac{\pi}{4})\\cos(\theta)=\frac{x}{\frac{3}{2}}\\\frac{3}{2}cos(\frac{\pi}{4})=x\:Cross\: Multiplying\\x=\frac{3}{2}*\frac{\sqrt{2}}{2}\\x =\frac{3\sqrt{2}}{4} \approx 1.06[/tex]

[tex]y=\frac{3}{2}sin(\frac{\pi}{4})\Rightarrow y =\frac{3\sqrt{2}}{4}[/tex]

[tex]B)(\frac{3}{2} , \frac{\pi}{4} ) \Rightarrow (\frac{3\sqrt{2}}{4} ,\frac{3\sqrt{2}}{4} )[/tex]

C) (c) (−1, −π/6)

[tex]C) (-1,-\frac{\pi}{6})\\cos(\theta)=\frac{x}{-1}\\-cos(\frac{-\pi}{6})=x\:Cross\: Multiplying\\x=\frac{\sqrt{3}}{2}[/tex]

[tex](-1,-\frac{\pi}{6})\\sin(\theta)=\frac{x}{-1}\\-sin(\frac{-\pi}{6})=x\:Cross\: Multiplying\\x=\frac{1}{2}[/tex]

[tex]C)(-1,\frac{\pi}{6})= (\frac{\sqrt{3}}{2},\frac{1}{2})[/tex]

Ver imagen profantoniofonte
Ver imagen profantoniofonte
ACCESS MORE