Simplify this equation.

Answer:
The simplified equation is [tex]\pm\frac{\sqrt{b^2-4ac}}{2a}[/tex]
Step-by-step explanation:
Step 1:Applying Quotient Rule
[tex]\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0[/tex]
[tex]\pm \sqrt{\frac{b^2-4ac}{4a^2}}[/tex] = [tex]\pm \frac{\sqrt{b^2-4ac}}{\sqrt{4a^2}}[/tex]----------------------------(1)
Step 2: Applying radical Rule
[tex]\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0[/tex]
[tex]\sqrt{4a^2}=\sqrt{4}\sqrt{a^2}[/tex]
So equation(1) can be written as
[tex]\pm \sqrt{\frac{b^2-4ac}{4a^2}}[/tex] [tex]= \pm \frac{\sqrt{b^2-4ac}}{\sqrt{4}\sqrt{a^2}}[/tex]-----------------------------(2)
Now
[tex]\sqrt{4} = 2[/tex]
[tex]\sqrt{a^2} = a[/tex]
Now equation(2) becomes
[tex]\pm \sqrt{\frac{b^2-4ac}{4a^2}}[/tex] = [tex]\pm \frac{\sqrt{b^2-4ac}}{2a}[/tex]