Last weekend, she collected $283 from selling 8 bouquets and 6 table arrangements. The week before, she collected $491 from selling 10 bouquets and 12 table arrangements. What is the price of a table arrangement?

Respuesta :

Answer:

The price of each table arrangement is $30.5

Step-by-step explanation:

Given as :

The Amount collected from selling 8 bouquets and 6 table arrangement = $283

The Amount collected from selling 10 bouquets and 12 table arrangement = $491

Let The price of each bouquets = $b

Let The price of each table arrangement = $a

According the question

Number of bouquets sold × price of each bouquets + number of table arrangement sold × price of each table arrangement = Total amount collected

i.e 8 b + 6 a = $283              .......A

And

10 b + 12 a = $491                  ............B

Now, Solving equation a and B

2 × (8 b + 6 a) - (10 b + 12 a) = 2 × 283 - 491

Or, 16 b + 12 a - 10 b - 12 a = 566 - 491

Or, (16 b - 10 b) + (12 a - 12 a) = 75

Or, 6 b + 0 = 75

∴  b = [tex]\frac{75}{6}[/tex]

i.e b = $12.5

So, The  price of each bouquets = b = $12.5

Put the value of b in eq A

∵ 8 b + 6 a = $283  

i.e 8 × 12.5 + 6 a = $283

Or, $100 + 6 a = $283

Or, 6 a = $283 - $100

Or, 6 a = $183

∴ a = [tex]\frac{183}{6}[/tex]

i.e a = $30.5

So, The price of each table arrangement  = $30.5

Hence, The price of each table arrangement is $30.5  Answer

Answer:

Price of a table arrangement = $30.5

Step-by-step explanation:

Let x be the bouquets and y be the table

Given:

she collected $283 from selling 8 bouquets and 6 table arrangements, so the equation is.

 [tex]8x+6y=283[/tex] ---------------(1)

The week before, she collected $491 from selling 10 bouquets and 12 table arrangements, so the second equation is written as.

[tex]10x+12y=491[/tex] ------------------(2)

We need to find the price of a table arrangement.

Solution:

First we solve the equation 1 for x.

 [tex]8x+6y=283[/tex]

 [tex]8x=283-6y[/tex]

 [tex]x=\frac{283-6y}{8}[/tex]

Substitute x value in equation 2.

[tex]10(\frac{283-6y}{8})+10y=491[/tex]

Simplify

[tex]\frac{10\times 283}{8}-\frac{10\times 6y}{8} + 12y = 491[/tex]

[tex]\frac{2830}{8}-\frac{60y}{8}+12y=491[/tex]

Both fraction number divided by 2.

[tex]\frac{1415}{4}-\frac{30y}{2}+12y=491[/tex]

[tex]12y-\frac{30y}{4}=491-\frac{1415}{4}[/tex]

[tex]\frac{4\times 12y-30y}{4}=\frac{4\times 491-1415}{4}[/tex]

[tex]\frac{48y-30y}{4}=\frac{1964-1415}{4}[/tex]

Multiply by 4 both side

[tex]4\times\frac{18y}{4}=4\times \frac{549}{4}[/tex]

[tex]y=\frac{549}{18}[/tex]

Both numerator and denominator divided by 9.

[tex]y=\frac{61}{2}[/tex]

[tex]y=30.5[/tex]

Therefore, the price of a table arrangement is $30.5

ACCESS MORE