contestada

one hose can fill a pond in 28 minutes, 2 hoses fill the same pond in 20 minutes. how long does the second hose alone to fill the pond?

Respuesta :

Answer:

70 minutes

Step-by-step explanation:

Given: One hose can fill a pond in 28 minutes.

            2nd hose can fill the same pond in 20 minutes.

One hose can fill [tex]\frac{1}{28}[/tex] of pond per minutes

Both one hose and 2nd hose can fill [tex]\frac{1}{20}[/tex] of pond per minutes.

Lets assume time taken by 2nd hose alone to fill pond be "x".

∴ 2nd hose alone can fill [tex]\frac{1}{x}[/tex] of pond per minute.

Now, forming an equation to show pond filled per minuted by both hoses.

[tex]\frac{1}{28} +\frac{1}{x} = \frac{1}{20}[/tex]

taking LCD as 28x

⇒ [tex]\frac{x+28}{28x} = \frac{1}{20}[/tex]

multiplying both side by 20

⇒ [tex]\frac{20(x+28)}{28x} = 1[/tex]

Using distributive property of multiplication

⇒ [tex]\frac{20x+560}{28x} = 1[/tex]

multiplying 28x on both side.

⇒ [tex]20x+560= 28x[/tex]

subtracting 20x on both side

⇒ [tex]560= 8x[/tex]

dividing both side by 8

⇒[tex]x= \frac{560}{8}[/tex]

x= 70 minutes

Hence, second hose can alone fill the pond in 70 minutes.

ACCESS MORE