Respuesta :

Answer:

This statement can be proven by contradiction for [tex]n \in \mathbb{N}[/tex] (including the case where [tex]n = 0[/tex].)

[tex]\text{Let $n \in \mathbb{N}$ be a perfect square}[/tex].

[tex]\textbf{Case 1.} ~ \text{n = 0}[/tex]:

[tex]\text{$n + 2 = 2$, which isn't a perfect square}[/tex].

[tex]\text{Claim verified for $n = 0$}[/tex].

[tex]\textbf{Case 2.} ~ \text{$n \in \mathbb{N}$ and $n \ne 0$. Hence $n \ge 1$}[/tex].

[tex]\text{Assume that $n$ is a perfect square}[/tex].

[tex]\text{$\iff$ $\exists$ $a \in \mathbb{N}$ s.t. $a^2 = n$}[/tex].

[tex]\text{Assume $\textit{by contradiction}$ that $(n + 2)$ is a perfect square}[/tex].

[tex]\text{$\iff$ $\exists$ $b \in \mathbb{N}$ s.t. $b^2 = n + 2$}[/tex].

[tex]\text{$n + 2 > n > 0$ $\implies$ $b = \sqrt{n + 2} > \sqrt{n} = a$}[/tex].

[tex]\text{$a,\, b \in \mathbb{N} \subset \mathbb{Z}$ $\implies b - a = b + (- a) \in \mathbb{Z}$}[/tex].

[tex]\text{$b > a \implies b - a > 0$. Therefore, $b - a \ge 1$}[/tex].

[tex]\text{$\implies b \ge a + 1$}[/tex].

[tex]\text{$\implies n+ 2 = b^2 \ge (a + 1)^2= a^2 + 2\, a + 1 = n + 2\, a + 1$}[/tex].

[tex]\text{$\iff 1 \ge 2\,a $}[/tex].

[tex]\text{$\displaystyle \iff a \le \frac{1}{2}$}[/tex].

[tex]\text{Contradiction (with the assumption that $a \ge 1$)}[/tex].

[tex]\text{Hence the original claim is verified for $n \in \mathbb{N}\backslash\{0\}$}[/tex].

[tex]\text{Hence the claim is true for all $n \in \mathbb{N}$}[/tex].

Step-by-step explanation:

Assume that the natural number [tex]n \in \mathbb{N}[/tex] is a perfect square. Then, (by the definition of perfect squares) there should exist a natural number [tex]a[/tex] ([tex]a \in \mathbb{N}[/tex]) such that [tex]a^2 = n[/tex].

Assume by contradiction that [tex]n + 2[/tex] is indeed a perfect square. Then there should exist another natural number [tex]b \in \mathbb{N}[/tex] such that [tex]b^2 = (n + 2)[/tex].

Note, that since [tex](n + 2) > n \ge 0[/tex], [tex]\sqrt{n + 2} > \sqrt{n}[/tex]. Since [tex]b = \sqrt{n + 2}[/tex] while [tex]a = \sqrt{n}[/tex], one can conclude that [tex]b > a[/tex].

Keep in mind that both [tex]a[/tex] and [tex]b[/tex] are natural numbers. The minimum separation between two natural numbers is [tex]1[/tex]. In other words, if [tex]b > a[/tex], then it must be true that [tex]b \ge a + 1[/tex].

Take the square of both sides, and the inequality should still be true. (To do so, start by multiplying both sides by [tex](a + 1)[/tex] and use the fact that [tex]b \ge a + 1[/tex] to make the left-hand side [tex]b^2[/tex].)

[tex]b^2 \ge (a + 1)^2[/tex].

Expand the right-hand side using the binomial theorem:

[tex](a + 1)^2 = a^2 + 2\,a + 1[/tex].

[tex]b^2 \ge a^2 + 2\,a + 1[/tex].

However, recall that it was assumed that [tex]a^2 = n[/tex] and [tex]b^2 = n + 2[/tex]. Therefore,

[tex]\underbrace{b^2}_{=n + 2)} \ge \underbrace{a^2}_{=n} + 2\,a + 1[/tex].

[tex]n + 2 \ge n + 2\, a + 1[/tex].

Subtract [tex]n + 1[/tex] from both sides of the inequality:

[tex]1 \ge 2\, a[/tex].

[tex]\displaystyle a \le \frac{1}{2} = 0.5[/tex].

Recall that [tex]a[/tex] was assumed to be a natural number. In other words, [tex]a \ge 0[/tex] and [tex]a[/tex] must be an integer. Hence, the only possible value of [tex]a[/tex] would be [tex]0[/tex].

Since [tex]a[/tex] could be equal [tex]0[/tex], there's not yet a valid contradiction. To produce the contradiction and complete the proof, it would be necessary to show that [tex]a = 0[/tex] just won't work as in the assumption.

If indeed [tex]a = 0[/tex], then [tex]n = a^2 = 0[/tex]. [tex]n + 2 = 2[/tex], which isn't a perfect square. That contradicts the assumption that if [tex]n = 0[/tex] is a perfect square, [tex]n + 2 = 2[/tex] would be a perfect square. Hence, by contradiction, one can conclude that

[tex]\text{if $n$ is a perfect square, then $n + 2$ is not a perfect square.}[/tex].

Note that to produce a more well-rounded proof, it would likely be helpful to go back to the beginning of the proof, and show that [tex]n \ne 0[/tex]. Then one can assume without loss of generality that [tex]n \ne 0[/tex]. In that case, the fact that [tex]\displaystyle a \le \frac{1}{2}[/tex] is good enough to count as a contradiction.

ACCESS MORE