Answer:
0.34148 m
Explanation:
[tex]\rho[/tex] = Resistivity of tungsten = [tex]5.6\times 10^{-8}\ \Omega m[/tex]
d = Diameter = 0.0018 inch
r = Radius = [tex]\dfrac{r}{2}=\dfrac{0.0018}{2}=0.0009\ in[/tex]
[tex]r=0.0009\times 0.0254=0.00002286\ m[/tex]
[tex]\alpha[/tex] = Temperature coefficient of tungsten = [tex]0.0045 /^{\circ}C[/tex]
Power is given by
[tex]P=\dfrac{V^2}{R}\\\Rightarrow R=\dfrac{V^2}{P}\\\Rightarrow R=\dfrac{120^2}{100}\\\Rightarrow R=144\ \Omega[/tex]
We have the equation
[tex]R_2=R_1[1+\alpha(T_2-T_1)]\\\Rightarrow R_1=\dfrac{R_2}{1+\alpha(T_2-T_1)}\\\Rightarrow R_1=\dfrac{144}{1+0.0045(2550-25)}\\\Rightarrow R_1=11.64812\ \Omega[/tex]
Resistance is given by
[tex]R=\rho\dfrac{l}{A}\\\Rightarrow l=\dfrac{RA}{\rho}\\\Rightarrow l=\dfrac{11.64812\times \pi (0.00002286)^2}{5.6\times 10^{-8}}\\\Rightarrow l=0.34148\ m[/tex]
The length of the filament is 0.34148 m