Answer:
a) [tex]Q_1+Q_2=19\times 10^{-6} C[/tex]
b) [tex]Q_1.Q_2=4.861\times 10^{-11}\ C^2[/tex]
c) [tex]\{Q_1,Q_2\}=\{15.953\times 10^{-6},3.047\times 10^{-6}\}[/tex]
Explanation:
Given:
We first find the product of two charges using Coulomb's law:
[tex]F=\frac{1}{4\pi.\epsilon_0}\times \frac{Q_1.Q_2}{r^2}[/tex]
[tex]0.07=9\times 10^9\times \frac{Q_1.Q_2}{2.5^2}[/tex]
[tex]Q_1.Q_2=4.861\times 10^{-11}\ C^2[/tex] ............................(2)
Now using eq.(1)&(2)
Put value of [tex]Q_1[/tex] from eq. (1) into eq. (2)
[tex](19\times 10^{-6}-Q_2).Q_2=4.861\times 10^{-11}\ C^2[/tex]
[tex](19\times 10^{-6}-Q_2).Q_2=4.861\times 10^{-11}[/tex]
[tex]Q_2=15.953\times 10^{-6}\ C\ or\ 3.047\times 10^{-6}\ C[/tex]
Therefore, Charges:
[tex]\{Q_1,Q_2\}=\{15.953\times 10^{-6},3.047\times 10^{-6}\}[/tex]