Respuesta :
Answer:
P (X<120)=0
Step-by-step explanation:
We can compute the probability for women:
μ=259 and σ=32
P ( X<120 )=P ( X−μ<120-259 )=P ((X−μ)/σ<(120−259)/32)
Since (x−μ)/σ =Z
and
[tex]Z=(120-259)/32=-4.34[/tex]
we have:
[tex]P(X<120)=P (Z<-4.34)[/tex]
Use the standard normal table to find this area.
[tex]P(Z<-a)=1-P(Z<a)[/tex]
[tex]P(Z<-4.34)=1-P(Z<4.34)[/tex]
Now we can find P ( Z<4.34 ) by using the standard normal table which is 1:
[tex]P(Z<-4.34)=1-P(Z<4.34 )=1-1=0[/tex]
Therefore: P (X<120)=0
For men
μ=242 and σ=29
P ( X<120 )=P ( X−μ<120-242 )=P ((X-μ)/σ <(120-242)/29 )
Since (x-μ)/σ=Z
and
[tex]Z=(120-242)/29=-4.21[/tex]
we have:
[tex]P(X<120)=P (Z<-4.21)[/tex]
Use the standard normal table to find this area.
[tex]P(Z<-a)=1-P(Z<a)[/tex]
[tex]P(Z<-4.21)=1-P(Z<4.21)[/tex]
Now we can find P ( Z<4.21 ) by using the standard normal table which is 1:
[tex]P(Z<-4.21)=1-P(Z<4.21)=1-1=0[/tex]
Therefore: P (X<120)=0
Using the Zscore principle, the probability of men and women finishing in less than two hours is 0
Recall :
- Zscore = (x - mean) ÷ standard deviation
- x = score
For men :
- x = 2 hours = 120 minutes
Zscore = (120 - 242) / 29 = - 4.206
P(Z < -4.206) = 0.00001
For women :
- x = 2 hours = 120 minutes
Zscore = (120 - 259) / 32 = -4.34
P(Z < -4.34) = 0.00001
The probability of Men and Women time being below 2 hours :
- P(Z < -4.34) - P(Z < -4.206)
P(Z < -4.34) - P(Z < -4.206) = 0.00001 - 0.00001 = 0
Hence, the probability of men and women finishing in less than two hours is 0
Learn more : https://brainly.com/question/19338417