Respuesta :
Answer:
[tex]F_{3h}=39065.298\times 10^9\ N[/tex] attractive toward +x axis is the net horizontal force
[tex]F_v=80062.47\times 10^9[/tex] attractive toward +y axis is the net vertical force
Explanation:
Given:
- charge at origin, [tex]Q_0=-3.35\times 10^{-6}\ C[/tex]
- magnitude of second charge, [tex]Q_2=2.05\times 10^{-6}\ C[/tex]
- magnitude of third charge, [tex]Q_3=5\times 10^{-6}\ C[/tex]
- position of second charge, [tex](x_2,y_2)\equiv(0,4.35)\ cm[/tex]
- position of third charge, [tex](x_3,y_3)\equiv(3.1,3.8)\ cm[/tex]
Now the distance between the charge at at origin and the second charge:
[tex]d_2=\sqrt{(x_2-0)^2+(y_2-0)^2}[/tex]
[tex]d_2=\sqrt{(0-0)^2+(4.35-0)^2}[/tex]
[tex]d_2=0.0435\ m[/tex]
Now the distance between the charge at at origin and the third charge:
[tex]d_3=\sqrt{(x_3-0)^2+(y_3-0)^2}[/tex]
[tex]d_3=\sqrt{(3.1-0)^2+(3.8-0)^2}[/tex]
[tex]d_3=0.04904\ m[/tex]
Now the force due to second charge:
[tex]F_2=\frac{1}{4\pi.\epsilon_0} \times \frac{Q_0.Q_2}{d_2^2}[/tex]
[tex]F_2=9\times 10^9\times \frac{3.3\times 2.05}{0.0435^2}[/tex]
[tex]F_2=32175.98\times 10^9\ N[/tex] attractive towards +y
Now the force due to third charge:
[tex]F_3=\frac{1}{4\pi.\epsilon_0} \times \frac{Q_0.Q_3}{d_3^2}[/tex]
[tex]F_3=9\times 10^9\times \frac{3.3\times 5}{0.04904^2}[/tex]
[tex]F_3=61748.38\times 10^9\ N[/tex] attractive
Now the its horizontal component:
[tex]F_{3h}=\frac{3.1}{4.9} \times 61748.38\times 10^9[/tex]
[tex]F_{3h}=39065.298\times 10^9\ N[/tex] attractive toward +x axis
Now the its vertical component:
[tex]F_{3v}=\frac{3.8}{4.9} \times 61748.38\times 10^9[/tex]
[tex]F_{3v}=47886.49\times 10^9\ N[/tex] upwards attractive
Now the net vertical force:
[tex]F_v=F_{3v}+F_2[/tex]
[tex]F_v=47886.49\times 10^9+32175.98\times 10^9[/tex]
[tex]F_v=80062.47\times 10^9[/tex]