Respuesta :

[tex]\frac{-1}{3}x[/tex] can be added to [tex]\frac{5}{6}x-4[/tex] to make it equivalent to [tex]\frac{1}{2}x-4[/tex].

Step-by-step explanation:

Let,

y be the term that can be added to given fraction.

Therefore;

[tex](\frac{5}{6}x-4)+y=\frac{1}{2}x-4[/tex]

Subtracting [tex]\frac{5}{6}x-4[/tex] from both sides to find y

[tex](\frac{5}{6}x-4)-(\frac{5}{6}x-4)+y=\frac{1}{2}x-4-(\frac{5}{6}x-4)\\\\\frac{5}{6}x-4-\frac{5}{6}x+4+y=\frac{1}{2}x+4-\frac{5}{6}x+4\\\\y=\frac{1}{2}x-\frac{5}{6}x\\\\y=\frac{3-5}{6}x\\\\y=\frac{-2}{6}x\\\\y=\frac{-1}{3}x[/tex]

[tex]\frac{-1}{3}x[/tex] can be added to [tex]\frac{5}{6}x-4[/tex] to make it equivalent to [tex]\frac{1}{2}x-4[/tex].

Keywords: fraction, subtraction

Learn more about fractions at:

  • brainly.com/question/7153188
  • brainly.com/question/7151553

#LearnwithBrainly

ACCESS MORE