Respuesta :
Answer:
[tex]\frac{1}{2}\text{sec}(x)\text{tan}(x)-\frac{1}{2}\text{ln}|\text{tan}(x)+\text{sec}(x)|+C[/tex]
Step-by-step explanation:
We have been given an integral [tex]\int \:\text{tan}^2\left(x\right)\text{sec}\left(x\right)dx[/tex]. We are asked to evaluate the given integral.
We will use identity [tex]\text{sec}^2(x)-\text{tan}^2(x)=1[/tex] as [tex]\text{tan}^2(x)=-1+\text{sec}^2(x)[/tex]:
[tex]\int \:(-1+\text{sec}^2(x))\text{sec}\left(x\right)dx[/tex]
[tex]\int \:-\text{sec}(x)+\text{sec}^3(x)dx[/tex]
[tex]\int \:-\text{sec}(x)dx+\int \:\text{sec}^3(x)dx[/tex]
Using common integral [tex]\int \:-\text{sec}(x)dx=\text{ln}|\text{tan}(x)+\text{sec}(x)|[/tex], we will get:
[tex]-\text{ln}|\text{tan}(x)+\text{sec}(x)|+\int \:sec^3(x)dx[/tex]
Using integral reduction [tex]\int \:\text{sec}^n(x)dx=\frac{\text{sec}^{n-1}(x)\text{sin}(x)}{n-1}+\frac{n-2}{n-1}\int \: \text{sec}^{n-2}(x)dx[/tex], we will get:
[tex]-\text{ln}|\text{tan}(x)+\text{sec}(x)|+\frac{\text{sec}^{3-1}(x)\text{sin}(x)}{3-1}+\frac{3-2}{3-1}\int \: \text{sec}^{3-2}(x)dx[/tex]
[tex]-\text{ln}|\text{tan}(x)+\text{sec}(x)|+\frac{\text{sec}^{2}(x)\text{sin}(x)}{2}+\frac{1}{2}\int \: \text{sec}(x)dx[/tex]
[tex]-\text{ln}|\text{tan}(x)+\text{sec}(x)|+\frac{\text{sec}(x)\frac{\text{sin}(x)}{\text{cos}(x)}}{2}+\frac{1}{2}\int \: \text{sec}(x)dx[/tex]
[tex]-\text{ln}|\text{tan}(x)+\text{sec}(x)|+\frac{1}{2}(\text{sec}(x)\text{tan}(x))+\frac{1}{2}(\text{ln}|\text{tan}(x)+\text{sec}(x)|)+C[/tex]
[tex]\frac{1}{2}\text{sec}(x)\text{tan}(x)-\frac{1}{2}\text{ln}|\text{tan}(x)+\text{sec}(x)|+C[/tex]
Therefore, our required integral would be [tex]\frac{1}{2}\text{sec}(x)\text{tan}(x)-\frac{1}{2}\text{ln}|\text{tan}(x)+\text{sec}(x)|+C[/tex].