The dissociation of calcium carbonate has an equilibrium constant of Kp= 1.20 at 800°C. CaCO3(s) ⇋ CaO(s) + CO2(g)

a.) What is the Kc for the reaction?
b.) If you place 20.0 g of CaCO3 in a 2.50 L container at 800°C, what is the pressure of CO2 in the container?
c.) What percentage of the original 20.0 g sample of CaCO3 remains undecomposed at equilibrium?

Respuesta :

Explanation:

(a)   Formula that shows relation between [tex]K_{c}[/tex] and [tex]K_{p}[/tex] is as follows.

                 [tex]K_c = K_p \times (RT)^{-\Delta n}[/tex]

Here, [tex]\Delta n[/tex] = 1

Putting the given values into the above formula as follows.

        [tex]K_c = K_p \times (RT)^{-\Delta n}[/tex]

                  = [tex]1.20 \times (RT)^{-1}[/tex]

                  = [tex]\frac{1.20}{0.0820 \times 1073}[/tex]

                  = 0.01316

(b) As the given reaction equation is as follows.

               [tex]CaCO_{3}(s) \rightleftharpoons CaO(s) + CO_{2}(g)[/tex]

As there is only one gas so ,

                [tex]p[CO_{2}] = K_{p}[/tex] = 1.20

Therefore, pressure of [tex]CO_{2}[/tex] in the container is 1.20.

(c)   Now, expression for [tex]K_{c}[/tex] for the given reaction equation is as follows.  

             [tex]K_{c} = \frac{[CaO][CO_{2}]}{[CaCO_{3}]}[/tex]

                        = [tex]\frac{x \times x}{(a - x)}[/tex]

                        = \frac{x^{2}}{(a - x)}[/tex]

where,    a = initial conc. of [tex]CaCO_{3}[/tex]

                  = [tex]\frac{22.5}{100} \times 9.56[/tex]

                  = 0.023 M

          0.0131 = [tex]\frac{x^{2}}{0.023 - x}[/tex]

                  x = 0.017

Therefore, calculate the percentage of calcium carbonate remained as follows.

       % of [tex]CaCO_{3}[/tex] remained = [tex](\frac{0.017}{0.023}) \times 100[/tex]

                                  = 75.46%

Thus, the percentage of calcium carbonate remained is 75.46%.

ACCESS MORE