Respuesta :

Answer:

x= 4

y = 6

Step-by-step explanation:

Given:

RSU is equilateral triangle

RT bisects US

To Find:

x and y

Solution:

Step 1: Finding the value of x

In an equilateral triangle,

All the sides are equal

Since RT bisects US

US =  3x+3x

Also RU  =  4x+8

Then ,

we know that

RU = US

[tex]4x+8 = 3x+3x[/tex]

[tex]4x+8 = 6x[/tex]

[tex]4x+ 8 -6x = 0[/tex]

[tex]-2x+8 = 0[/tex]

[tex]-2x = -8[/tex]

[tex]x = \frac{-8}{-2}[/tex]

[tex]x = 4[/tex]

Step 2: Finding the value of y

In an equilateral triangle,

All the angles are equal  to 60 degrees

Then [tex]\angle URS = 30^{\circ}[/tex]

But RT bisects US

Then

[tex]\angle URS = \angle URT +\angle TRS = 60^{\circ}[/tex]

where

[tex]\angle URT and \angle RTS[/tex] are equal

So

[tex]\angle RTS = 30^{\circ}[/tex]

In the figure

[tex]30^{\circ} = 5y^{\circ}[/tex]

[tex]y^{\circ}= \frac{30^{\circ}}{5}[/tex]

[tex]y^{\circ} = 6[/tex]

Ver imagen nandhini123
ACCESS MORE