Answer:
x= 4
y = 6
Step-by-step explanation:
Given:
RSU is equilateral triangle
RT bisects US
To Find:
x and y
Solution:
Step 1: Finding the value of x
In an equilateral triangle,
All the sides are equal
Since RT bisects US
US = 3x+3x
Also RU = 4x+8
Then ,
we know that
RU = US
[tex]4x+8 = 3x+3x[/tex]
[tex]4x+8 = 6x[/tex]
[tex]4x+ 8 -6x = 0[/tex]
[tex]-2x+8 = 0[/tex]
[tex]-2x = -8[/tex]
[tex]x = \frac{-8}{-2}[/tex]
[tex]x = 4[/tex]
Step 2: Finding the value of y
In an equilateral triangle,
All the angles are equal to 60 degrees
Then [tex]\angle URS = 30^{\circ}[/tex]
But RT bisects US
Then
[tex]\angle URS = \angle URT +\angle TRS = 60^{\circ}[/tex]
where
[tex]\angle URT and \angle RTS[/tex] are equal
So
[tex]\angle RTS = 30^{\circ}[/tex]
In the figure
[tex]30^{\circ} = 5y^{\circ}[/tex]
[tex]y^{\circ}= \frac{30^{\circ}}{5}[/tex]
[tex]y^{\circ} = 6[/tex]