Respuesta :
Answer:
a) [tex]xyz[/tex]
b) [tex]\frac{x}{z}-y[/tex]
e) [tex]\frac{xy}{z}[/tex]
h) [tex]x-\frac{y}{z}[/tex]
Explanation:
The given options are:
a) [tex]xyz[/tex]
b) [tex]\frac{x}{z}-y[/tex]
c) [tex]\frac{x-y}{z}[/tex]
d) [tex]xz+y[/tex]
e) [tex]\frac{xy}{z}[/tex]
f) [tex]x+y+z[/tex]
g) [tex]\frac{x}{y}-z[/tex]
h) [tex]x-\frac{y}{z}[/tex]
Let's try with each of them and find the mathematical combinations that might be meaningful, taking into account [tex]x=1.1 cm[/tex], [tex]y=0.8 s[/tex] and [tex]z=3.9 cm/s[/tex]. This means we have to be careful with the units:
a) [tex]xyz[/tex]
Here we have a mulitplication:
[tex](1.1. cm)(0.8 s)(3.9 cm/s)=3.43 cm^{2}[/tex] Could be meaningful
b) [tex]\frac{x}{z}-y[/tex]
[tex]\frac{1.1 cm}{3.9 cm/s}-0.8 s=0.28 s - 08 s=-0.51 s[/tex] Could be meaningful
c) [tex]\frac{x-y}{z}[/tex]
[tex]\frac{1.1 cm-0.8 s}{3.9 cm/s}[/tex] Not meaningful, since we cannot operate summing and subtracting with two different units.
d) [tex]xz+y[/tex]
[tex](1.1 cm)(3.9 cm/s)+0.8 s=4.29 cm^{2}/s+0.8 s[/tex] Not meaningful, since we cannot operate summing and subtracting with two different units.
e) [tex]\frac{xy}{z}[/tex]
[tex]\frac{(1.1 cm)(0.8 s)}{3.9 cm/s}=0.22 s^{2}[/tex] Could be meaningful
f) [tex]x+y+z[/tex]
[tex]1.1 cm+0.8 s+3.9 cm/s[/tex] Not meaningful, since we cannot operate summing and subtracting with different units.
g) [tex]\frac{x}{y}-z[/tex]
[tex]\frac{1.1 cm}{0.8 s}-3.9 cm/s[/tex] Not meaningful, since we cannot operate summing and subtracting with different units.
h) [tex]x-\frac{y}{z}[/tex]
[tex]1.1 cm-\frac{0.8 s}{3.9 cm/s}=0.89 cm[/tex] Could be meaningful