contestada

spring-loaded toy gun projects a 5.9 g nerf pellet horizontally. The spring constant is 8.5 N/m, the barrel of the gun is 17 cm long, and a constant frictional force of 0.037 N exists between the barrel and the nerf pellet. If the spring is compressed 6.8 cm for this launch, determine the speed (in m/s) of the pellet as it leaves the barrel. (Assume the pellet is in contact with the barrel for the full length of the barrel.) m/s

Respuesta :

Answer:

Solution:

As per the question:

Mass of the pellet, m = 5.9 g = 0.059 kg

Spring constant, k = 8.5 N/m

Length of the barrel, l = 17 cm = 0.17 m

Frictional force, F = 0.037 N

Compression in spring, [tex]\Delta x = 6.8\ cm = 0.068\ m[/tex]

Now,

To calculate the speed of the pellet:

Using the principle of conservation of energy:

Change in spring potential energy is used in doing work against the friction force and provides the required kinetic energy:

[tex]\frac{1}{2}k\Delta x^{2} = \frac{1}{2}mv^{2} + Fl[/tex]

[tex]\frac{1}{2}\times 8.5\times 0.0068^{2} = \frac{1}{2}\times 5.9\times 10^{- 3}\times v^{2} + 0.037\times 0.17[/tex]

[tex]v^{2} = 0.2797[/tex]

v = 0.5289 m/s

Answer:

[tex]v=5.5836\ m.s^{-1}[/tex]

Explanation:

Given:

  • mass of pellet, [tex]m=5.9\times 10^{-3}\ kg[/tex]
  • spring constant of the gun, [tex]k=8.5\ N.m^{-1}[/tex]
  • length of the barrel, [tex]l=0.17\ m[/tex]
  • frictional force offered by the barrel, [tex]f=0.037\ N[/tex]
  • compression of the spring, [tex]\delta x=0.068\ m[/tex]

Spring force on the pellet:(inside the barrel)

[tex]F=k.\delta x[/tex]

[tex]F=8.5\times 0.068[/tex]

[tex]F=0.578\ N[/tex]

Net force on the pellet:(INSIDE THE BARREL)

[tex]F_n=F-f[/tex]

[tex]F_n=0.578-0.037[/tex]

[tex]F_n=0.541\ N[/tex]

Acceleration of the pellet:(inside the barrel)

[tex]a=\frac{F_n}{m}[/tex]

[tex]a=\frac{0.541}{0.0059}[/tex]

[tex]a=91.6949\ m.s^{-2}[/tex]

Using the equation of motion:

[tex]v^2=u^2+2a.l[/tex]

where, v & u are the final and initial velocities respectively

[tex]v^2=0^2+2\times 91.6949\times 0.17[/tex]

[tex]v=5.5836\ m.s^{-1}[/tex] is the velocity at the exit of the barrel

ACCESS MORE