Respuesta :
Answer:
Solution:
As per the question:
Mass of the pellet, m = 5.9 g = 0.059 kg
Spring constant, k = 8.5 N/m
Length of the barrel, l = 17 cm = 0.17 m
Frictional force, F = 0.037 N
Compression in spring, [tex]\Delta x = 6.8\ cm = 0.068\ m[/tex]
Now,
To calculate the speed of the pellet:
Using the principle of conservation of energy:
Change in spring potential energy is used in doing work against the friction force and provides the required kinetic energy:
[tex]\frac{1}{2}k\Delta x^{2} = \frac{1}{2}mv^{2} + Fl[/tex]
[tex]\frac{1}{2}\times 8.5\times 0.0068^{2} = \frac{1}{2}\times 5.9\times 10^{- 3}\times v^{2} + 0.037\times 0.17[/tex]
[tex]v^{2} = 0.2797[/tex]
v = 0.5289 m/s
Answer:
[tex]v=5.5836\ m.s^{-1}[/tex]
Explanation:
Given:
- mass of pellet, [tex]m=5.9\times 10^{-3}\ kg[/tex]
- spring constant of the gun, [tex]k=8.5\ N.m^{-1}[/tex]
- length of the barrel, [tex]l=0.17\ m[/tex]
- frictional force offered by the barrel, [tex]f=0.037\ N[/tex]
- compression of the spring, [tex]\delta x=0.068\ m[/tex]
Spring force on the pellet:(inside the barrel)
[tex]F=k.\delta x[/tex]
[tex]F=8.5\times 0.068[/tex]
[tex]F=0.578\ N[/tex]
Net force on the pellet:(INSIDE THE BARREL)
[tex]F_n=F-f[/tex]
[tex]F_n=0.578-0.037[/tex]
[tex]F_n=0.541\ N[/tex]
Acceleration of the pellet:(inside the barrel)
[tex]a=\frac{F_n}{m}[/tex]
[tex]a=\frac{0.541}{0.0059}[/tex]
[tex]a=91.6949\ m.s^{-2}[/tex]
Using the equation of motion:
[tex]v^2=u^2+2a.l[/tex]
where, v & u are the final and initial velocities respectively
[tex]v^2=0^2+2\times 91.6949\times 0.17[/tex]
[tex]v=5.5836\ m.s^{-1}[/tex] is the velocity at the exit of the barrel