Respuesta :
Answer:
0.8041
Step-by-step explanation:
We know that
μ=72 and σ=5
and P(65<X<78)
We can determine the Z value as (X-μ)/σ
P( 65<X<78 )=P( 65-72< X-μ<78-72)
[tex]P((65-72)/5 <Z<(78-72)/5)[/tex]
[tex]P(65<X<78 )=P(-1.4<Z<1.2)[/tex]
To fine the Z values:
[tex]P (-1.4<Z<1.2 )=P ( Z<1.2 )-P (Z<-1.4 )[/tex]
From the standard normal tables:
[tex]P (Z<1.2 )=0.8849[/tex]
to find P ( Z<-1.4)
[tex]P ( Z<-a)=1-P ( Z<a )[/tex]
From the standard normal tables:
[tex]P ( Z<-1.4)=1-P ( Z<1.4 )=1-0.9192=0.0808[/tex]
Therefore
[tex]P(-1.4<Z<1.2 )=0.8041[/tex]
[tex]P (65<X<78)=0.8041[/tex]
Using the Zscore principle, the probability that a student's score will be between 65 and 78 is 0.80
Recall :
- Zscore = (score - mean) ÷ σ
For a score of 65 :
Zscore = (65 - 72) ÷ 5
Zscore = -1.4
Using the normal distribution table :
P(Z < - 1.4) = 0.08
For a score of 65 :
Zscore = (78 - 72) ÷ 5
Zscore = 1.2
Using the normal distribution table :
P(Z < 1.2) = 0.88
P(Z < 1.2) - P(Z < -1.4) = 0.88 - 0.08 = 0.8
Hence, the probability that a student's score will be between 65 and 78 is 0.80
Learn more : https://brainly.com/question/16144029