Answer:
[tex]cos(theta)= \frac{adjacent }{hypotenuse} =-\frac{4}{5}[/tex]
[tex]tan(theta)= \frac{opposite}{adjacent } =\frac{3}{4}[/tex]
[tex]sec(theta)= \frac{1}{cos(theta)} =-\frac{5}{4}[/tex]
[tex]csc(theta)=\frac{1}{sin(theta)}=\frac{-5}{3}[/tex]
[tex]cot(theta)= \frac{1}{tan(theta)} =\frac{4}{3}[/tex]
Step-by-step explanation:
[tex]sin(theta)=\frac{-3}{5}[/tex]
sin= opposite / hypotensue
opposite of theta = 3 and hypotenuse = 5
the theta is in quadrant 3. Sin is negative in third quadrant. tan is positive and cos is negative in third quadrant.
Make a right angle triangle . and find the adjacent side
[tex]c^2= a^2 + b^2[/tex]
[tex]5^2= (3)^2 + b^2[/tex]
[tex]25=9 + b^2[/tex]
subtract 9 from both sides
[tex]b^2= 16[/tex]
b=4, adjacent side = 4
[tex]cos(theta)= \frac{adjacent }{hypotenuse} =-\frac{4}{5}[/tex]
[tex]tan(theta)= \frac{opposite}{adjacent } =\frac{3}{4}[/tex]
[tex]sec(theta)= \frac{1}{cos(theta)} =-\frac{5}{4}[/tex]
[tex]csc(theta)=\frac{1}{sin(theta)}=\frac{-5}{3}[/tex]
[tex]cot(theta)= \frac{1}{tan(theta)} =\frac{4}{3}[/tex]