Respuesta :

Answer:

The simplified value of [tex]-25^{-\frac{1}{2}}[/tex] is [tex]-\frac{1}{5}[/tex].

Step-by-step explanation:

As the given expression is

[tex]-25^{-\frac{1}{2}}[/tex]

Lets simplify this expression step by step

As

[tex]-25^{-\frac{1}{2}}....[A][/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\frac{1}{a^b}[/tex]

[tex]25^{-\frac{1}{2}}=\frac{1}{25^{\frac{1}{2}}}[/tex]

So, lets plug [tex]25^{-\frac{1}{2}}=\frac{1}{25^{\frac{1}{2}}}[/tex] in equation [A] i.e.  [tex]-25^{-\frac{1}{2}}....[A][/tex]

[tex]-25^{-\frac{1}{2}}....[A][/tex]

[tex]=-\frac{1}{25^{\frac{1}{2}}}[/tex]        ∵ [tex]25^{-\frac{1}{2}}=\frac{1}{25^{\frac{1}{2}}}[/tex]

[tex]=-\frac{1}{5}[/tex]           ∵ [tex]25^{\frac{1}{2}}=5[/tex]

Therefore, the simplified value of [tex]-25^{-\frac{1}{2}}[/tex] is [tex]-\frac{1}{5}[/tex].

Keywords: simplification, exponent rule

Learn more about expression simplification from brainly.com/question/13848834

#learnwithBrainly

ACCESS MORE