Answer:
10573375000
[tex]216.57162\ N/C[/tex]
Explanation:
k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]
r = Distance = [tex]\dfrac{d}{2}=\dfrac{23}{2}=11.5\ cm[/tex]
E = Electric field = 1150 N/C
Electric field is given by
[tex]E=\dfrac{kq}{r^2}\\\Rightarrow q=\dfrac{Er^2}{k}\\\Rightarrow q=\dfrac{1150\times 0.115^2}{8.99\times 10^9}\\\Rightarrow q=1.69174\times 10^{-9}\ C[/tex]
Number of electrons is given by
[tex]n=\dfrac{1.69174\times 10^{-9}}{1.6\times 10^{-19}}\\\Rightarrow n=10573375000[/tex]
Number of excess electrons is 10573375000
r = 0.115+0.15 = 0.265 m
[tex]E=\dfrac{kq}{r^2}\\\Rightarrow E=\dfrac{8.99\times 10^9\times 1.69174\times 10^{-9}}{0.265^2}\\\Rightarrow E=216.57162\ N/C[/tex]
The electric field is [tex]216.57162\ N/C[/tex]