Answer:
[tex]1.812\times 10^{-9} N[/tex] is the magnitude of the electric force between a proton and an electron.
Explanation:
Coulomb's law is given as ;
[tex]F=K\times \frac{q_1\times q_2}{r^2}[/tex]
[tex]q_1,q_2[/tex] = Charges on both charges
r = distance between the charges
K = Coulomb constant =[tex]9\times 10^{9} N m^2/C^2[/tex]
We have ;
Charge of proton =[tex]q_1=1.602\times 10^{-19} C[/tex]
Charge of electron =[tex]q_2=-1.602\times 10^{-19} C[/tex]
[tex]r=3.57 \AA=3.57\times 10^{-10} m[/tex]
Force between the proton and electron at r distance will be :
[tex]F=9\times 10^{9} N m^2/C^2\times \frac{1.602\times 10^{-19} C\times 1.602\times 10^{-19} C}{(3.57\times 10^{-10} m)^2}[/tex]
[tex]F=-1.812\times 10^{-9} N[/tex]
(negative sign means that attractive force)
[tex]1.812\times 10^{-9} N[/tex] is the magnitude of the electric force between a proton and an electron.