Respuesta :

Answer: 0.4512

Step-by-step explanation:

A bit string is sequence of bits (it only contains 0 and 1).

We assume that the  0 and 1 area equally likely to any place.

i.e. P(0)= P(1)= [tex]\dfrac{1}{2}[/tex]

The length of bits : n = 10

Let X = Number of getting ones.

Then , [tex]X \sim Bin(n=10,\ p=\dfrac{1}{2})[/tex]

Binomial distribution formula : [tex]P(X=x)=^nC_x p^x q^{n-x}[/tex] , where p= probability of getting success in each event and q= probability of getting failure in each event.

Here , [tex]p=q=\dfrac{1}{2}[/tex]

Then ,The probability that a bit string of length 10 contains exactly 4 or 5 ones.

[tex]P(X= 4\ or\ 5)=P(x=4)+P(x=5)\\\\=^{10}C_4(\dfrac{1}{2})^{10}+^{10}C_4(\dfrac{1}{2})^{10}[/tex]

[tex]=\dfrac{10!}{4!6!}(\dfrac{1}{2})^{10}+\dfrac{10!}{5!5!}(\dfrac{1}{2})^{10}[/tex]

[tex]=(\dfrac{1}{2})^{10}(\dfrac{10!}{4!6!}+\dfrac{10!}{5!5!})[/tex]

[tex]=(\dfrac{1}{2})^{10}(210+252)[/tex]

[tex]=(0.0009765625)(462)[/tex]

[tex]=0.451171875\approx0.4512[/tex]

Hence, the  probability that a bit string of length 10 contains exactly 4 or 5 ones is 0.4512.

ACCESS MORE