Answer:
Explanation:
Given
Length [tex]L=0.864\ m[/tex]
frequency [tex]f=24.03\ Hz[/tex]
Tension in the string [tex]T=5.24\ N[/tex]
Wave speed in a string is given by
[tex]v=\sqrt{\frac{T}{\mu }}[/tex]
where [tex]v=wave\ speed[/tex]
[tex]T=tension[/tex]
[tex]\mu =linear\ mass\ density[/tex]
[tex]\mu =\frac{T}{v^2}[/tex]
wavelength for this wave [tex]\lambda=2L=2\times 0.864=1.728\ m[/tex]
and [tex]v=f\times \lambda[/tex]
[tex]v=24.03\times 1.728[/tex]
[tex]v=41.52\ m/s[/tex]
[tex]\mu =\frac{T}{v^2}[/tex]
[tex]\mu =\frac{5.24}{41.52^2}[/tex]
[tex]\mu =3.04\times 10^{-3}\ kg/m[/tex]