Respuesta :

Answer: Second option.

Step-by-step explanation:

Given the folllowing Linear Equation:

[tex]7y+2=3x-5[/tex]

You need to substitute the coordinates of each point given in the options into the equation and then evaluate.

1) Substituting  [tex](2, -\frac{1}{7})[/tex] into the equation, you get:

[tex]7(-\frac{1}{7})+2=3(2)-5\\\\-1+2=6-5\\\\1=1\ (TRUE)[/tex]

2) Substituting the point [tex](3, -\frac{3}{7})[/tex]. you get:

[tex]7(-\frac{3}{7})+2=3(3)-5\\\\-3+2=9-5\\\\-1=4\ (FALSE)[/tex]

3) Apply the same procedure using the point [tex](1, -\frac{4}{7})[/tex]:

 [tex]7(-\frac{4}{7})+2=3(1)-5\\\\-4+2=3-5\\\\-2=-2\ (TRUE)[/tex]

4)  Apply the same procedure using the point [tex](-1, -\frac{10}{7})[/tex]

 [tex]7(-\frac{10}{7})+2=3(-1)-5\\\\-10+2=-3-5\\\\-8=-8\ (TRUE)[/tex]

5) Substituting  [tex](0,-1)[/tex] into the equation:

 [tex]7(-1)+2=3(0)-5\\\\-7+2=-0-5\\\\-5=-5\ (TRUE)[/tex]

Therefore, the point [tex](3, -\frac{3}{7})[/tex]  is not on the given line.

B(3,-3/7) is not on the line with equation

A linear equation is in the form:

y = mx + b;

where y, x are variables, m is the slope of the line and b is the y intercept.

Given the equations: 7y+2=3x-5, it was plotted using geogebra online tool.

From the graph we can see that B(3,-3/7) is not on the line with equation.

Find out more at: https://brainly.com/question/13911928

Ver imagen raphealnwobi
ACCESS MORE