Verify that these two are inverses using composition of functions and show your work

Answer:
f(g(x)) = g(f(x)) = x
Step-by-step explanation:
To prove two functions, say f(x) and g(x) are inverses to each other, we take the composition of the two functions: f(g(x)) and g(f(x)) and prove that:
f(g(x)) = g(f(x)) = x, x is the identity function
Now, given:
[tex]$ f(x) = \frac{\sqrt[3]{x + 4}}{7} $[/tex] and [tex]$ g(x) = (7x)^3 - 4 $[/tex]
Calculate: f(g(x)):
[tex]$ f(g(x)) = f((7x)^3 - 4) $[/tex]
It means to substitute [tex]$ (7x)^3 - 4$[/tex] in place of x.
Therefore, we get:
[tex]$ f(g(x)) = \bigg \{ \frac{ \sqrt[3]{(7x)^3 - 4 + 4}}{7} \bigg \} $[/tex]
[tex]$ f(g(x)) = \bigg \{ \frac{ \sqrt[3]{(7x)^3}}{7} \bigg \} $[/tex]
[tex]$ = \frac{(7x)}{7} $[/tex]
= x, the identity function.
Now compute g(f(x))
[tex]$ g(x) = (7x)^3 - 4 $ \therefore g(x) = 343x^3 - 4 $[/tex]
Now, [tex]$ g(f(x)) = 343 \bigg \{ \bigg ( \frac{\sqrt[3]{x + 4}}{7} \bigg ) ^3 \bigg \} - 4[/tex]
[tex]$ = 7^3 \frac{x + 4}{7^3} - 4 $[/tex]
[tex]$ = (x + 4) - 4 $[/tex]
= x
We have proved f(g(x)) = g(f(x)) = x. Hence, they are inverses of each other.