Respuesta :

Answer:

The quadratic equation for the given roots  6 , [tex]\frac{2}{3}[/tex] is y = 3 x² - 20 x + 12

Step-by-step explanation:

Given as :

The roots of the quadratic equation are 6 , [tex]\frac{2}{3}[/tex]

Let The standard quadratic equation

a x² + b x + c = 0

So, the roots are [tex]\alpha[/tex] = 6

And [tex]\beta[/tex] =  [tex]\frac{2}{3}[/tex]

Sum of roots = [tex]\alpha +\beta[/tex]

i.e  [tex]\alpha +\beta[/tex]  = 6 + [tex]\frac{2}{3}[/tex] = [tex]\frac{20}{3}[/tex]            

The quadratic equation

y = (x - α) (x - β)

Or, y = (x - 6) (x -  [tex]\frac{2}{3}[/tex])

Or, y = x² -  [tex]\frac{2}{3}[/tex] x - 6 x + (6 ×  [tex]\frac{2}{3}[/tex])

Or, y =  x² - ( [tex]\frac{2}{3}[/tex] + 6) x + 4

Or, y = x² - ([tex]\frac{2+18}{3}[/tex] ) x + 4

Or, y =  x² - [tex]\frac{20}{3}[/tex]x + 4

Or, y = 3 x² - 20 x + 12

Hence, The quadratic equation for the given roots  6 , [tex]\frac{2}{3}[/tex] is y = 3 x² - 20 x + 12 . Answer

ACCESS MORE