Respuesta :

Answer:

A. (3,-4) fall on the graph of f(x) = -3 x² + 6x + 5.

B. (-1,4) DO NOT fall on the graph of f(x) = -3 x² + 6x + 5.

Step-by-step explanation:

Here, the given function is: f(x)  = -3 x² + 6 x + 5

Now, as we know f(x)  = y

⇒  y = -3 x² + 6x + 5

Now, to show if any arbitrary point (a,b) is on the graph of y,

we need to show that for y = b, and x = a the Left side of expression  =Right side of expression.

A.  Consider the point (3,-4)

Here, y = -4, and x = 3

Solving -3 x² + 6 x + 5 for x  = 3, we get:

-3 (3)² + 6 (3) + 5  = -27 + 18 + 5 = -27 + 23 = -4  = y

⇒f(3) = y = -4   ⇒ Left Side =  Right side

Hence, (3,-4) fall on the graph of f(x) = -3 x² + 6x + 5.

A.  Consider the point (-1,4)

Here, y = 4, and x = -1

Solving -3 x² + 6 x + 5 for x  = -1, we get:

-3 (-1)² + 6 (-1) + 5  = -3 -6 + 5  = -4  ≠ y

⇒f(-1) = y ≠ 4   ⇒ Left Side  Right side

Hence, (-1,4) DO NOT fall on the graph of f(x) = -3 x² + 6x + 5.

ACCESS MORE