by calculating |AC| and |BC| , show that |AC| =|BC|

Answer:
[tex] |AC| = |BC| = \sqrt{29} [/tex]
Step-by-step explanation:
We are given the coordinates of points A, B, and C.
A(3, 1)
B(0, 4)
C(-2, -1)
Now we use the distance formula to find each length.
[tex] d = \sqrt{(x2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
[tex] |AC| = \sqrt{(-2 - 3)^2 + (-1 - 1)^2} [/tex]
[tex] |AC| = \sqrt{(-5)^2 + (-2)^2} [/tex]
[tex] |AC| = \sqrt{25 + 4} [/tex]
[tex] |AC| = \sqrt{29} [/tex]
[tex] |BC| = \sqrt{(-2 - 0)^2 + (-1 - 4)^2} [/tex]
[tex] |BC| = \sqrt{(-2)^2 + (-5)^2} [/tex]
[tex] |BC| = \sqrt{4 + 25} [/tex]
[tex] |BC| = \sqrt{29} [/tex]
[tex] |AC| = |BC| = \sqrt{29} [/tex]