Respuesta :

[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P(\stackrel{x_1}{-4}~,~\stackrel{y_1}{-2})\qquad Q(\stackrel{x_2}{4}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ PQ=\sqrt{[4-(-4)]^2+[3-(-2)]^2}\implies PQ=\sqrt{(4+4)^2+(3+2)^2} \\\\\\ PQ = \sqrt{8^2+5^2}\implies PQ=\sqrt{64+25}\implies PQ=\sqrt{89}\implies \stackrel{\textit{rounded up}}{PQ = 9.4}[/tex]

Answer: the distance is 9.4339

Step-by-step explanation:

You have to apply the formula of the distance between two coordinate points

\sqrt[(X2-X1)^{2} + (Y2-Y1)^{2}]

First you have to label X1, X2 and Y1,Y2

Our coordinate points are:

P= (-4. -2)    and  Q = (4, 3) Now we label them to apply the formula

P= (X1, Y1)    and  Q= (X2, Y2)

\sqrt[(X2-X1)^{2} + (Y2-Y1)^{2}], replacing

\sqrt[(4-(-4))^{2} + (3-(-2))^{2}]

\sqrt[(4+4)^{2} + (3+2)^{2}]

\sqrt[(8)^{2} + (5^{2}]  

\sqrt[64+ 25]  

\sqrt[89]

9.4339

ACCESS MORE