Respuesta :

Answer:

10.6

Step-by-step explanation:

The shortest distance between two points will be a straight line.

To calculate the straight line distance between two points, use the formula [tex]L = \sqrt{(x_{2}-x_{1} )^{2}+(y_{2}-y_{1} )^{2}}[/tex]

Choose which point will be data set 1 and data set 2.

Data set 1: P(3, -1)      x₁ = 3     y₁ = -1

Data set 2: Q(-5, 6)    x₂ = -5   y₂ = 6

Substitute the values into the formula

[tex]L = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

[tex]PQ = \sqrt{(-5 - 3)^{2}+(6 - (-1))^{2}}[/tex]    Solve inside brackets first

[tex]PQ = \sqrt{(-8)^{2}+(7)^{2}}[/tex]    Square each number

[tex]PQ = \sqrt{64  +  49}[/tex]    Add

[tex]PQ = \sqrt{113}[/tex]    Exact answer in radical (root) form

[tex]PQ = 10.630....[/tex]   Exact decimal answer

[tex]PQ = 10.6[/tex]   Rounded down to one decimal place

The shortest distance between point P and point Q is 10.6

ACCESS MORE