Answer:
Time that will pass before Jon hits the ball is 0.5 seconds
The maximum height the ball attains is 6.875 feet
Step-by-step explanation:
Step 1: To find out how much time passes before Jon hits the ball
The height he hits the ball when it falls is 4 feet
so,
[tex]4 = - 16t^2 + 6t + 5[/tex]
[tex]4 + 16t^2 - 6t - 5 = 0[/tex]
[tex]16t^2 - 6t -1 = 0[/tex] -------------------------(1)
Solving eq(1) using quadratic formula, we get
[tex]t = \frac{-b \pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]t = \frac{-(-6) \pm\sqrt{(-6)^2-4(16)(-1)}}{2(16)}[/tex]
[tex]t = \frac{6 \pm\sqrt{36+64}}{32}[/tex]
[tex]t = \frac{6 \pm\sqrt{100}}{32}[/tex]
[tex]t = \frac{6 \pm10}{32}[/tex]
Taking only the positive value
[tex]t = \frac{16}{32}[/tex]
t = 0.5 seconds
Step 2: To find the maximum height of the ball
Max height will be reached at [[tex]\frac{-b}{2a}[/tex]] sec
[tex]=\frac{-b}{2a}[/tex]
[tex]\\ = \frac{-(-6)}{2\times16}\\[/tex]
[tex]= \frac{6}{32}[/tex]
Now the height at t= [tex]\frac{6}{32}[/tex] is
[tex]16( \frac{6}{32})^2 - 6( \frac{6}{32}) -1 = h[/tex]
[tex]( \frac{6}{2})^2 - \frac{36}{32} -1 = h[/tex]
[tex]( 3)^2 - 1.125 -1 = h[/tex]
[tex]9 - 1.125 -1 = h[/tex]
6.875 = h