Respuesta :
Answer:
[tex]A=\frac{65}{64}\ or\ A=1.015625[/tex]
Step-by-step explanation:
Given:
The expression is given as:
[tex]2^{x-6}+2^{x}[/tex]
The equivalent expression to the above expression is given as:
[tex]A\cdot 2^{x}[/tex]
Now, simplifying the original expression using the law of indices:
[tex]a^{m-n}=\frac{a^m}{a^n}[/tex]
So, [tex]2^{x-6}=\frac{2^x}{2^6}[/tex]. The expression becomes:
[tex]=\frac{2^x}{2^6}+2^x[/tex]
Now, [tex]2^x[/tex] is a common factor to both the terms, so we factor it out. This gives,
[tex]=2^x(\dfrac{1}{2^6}+1)\\\\=2^x(\frac{1}{64}+1)\\\\=2^x(\frac{1}{64}+\frac{64}{64})\\\\=2^x(\frac{1+64}{64})\\\\=2^x(\frac{65}{64})\\\\=(\frac{65}{64})\cdot 2^x[/tex]
Now, on comparing the simplified form with the equivalent expression, we conclude:
[tex]A\cdot2^x=(\frac{65}{64})\cdot 2^x\\\\A=\frac{65}{64}\ or\ 1.015625[/tex]
Therefore, the value of 'A' is [tex]A=\frac{65}{64}\ or\ A=1.015625[/tex]