Respuesta :
Answer:
[tex]\log _{8} 4+\log _{8} a+\log _{8}(b-4)-4 \log _{8} c[/tex]
The equivalent expression is log Subscript 8 Baseline 4 + log Subscript 8 Baseline a + (log Subscript 8 Baseline (b minus 4) minus 4 log Subscript 8 Baseline c)
Step-by-step explanation:
The expression is written as [tex]\log _{8}\left(4 a\left(\frac{b-4}{c^{4}}\right)\right)[/tex]
Using the log rule: [tex]\log _{c}(x y)=\log _{c} x+\log _{c} y[/tex], the expression can be written as,
[tex]\log _{c}(x y)=\log _{c} x+\log _{c} y[/tex]
Using the log rule: [tex]\log _{c}\left(\frac{x}{y}\right)=\log _{c} x-\log _{c} y[/tex] , the expression can be written as,
[tex]\log _{8} 4+\log _{8} a+\log _{8}(b-4)-\log _{8} c^{4}[/tex]
Since, we know that, [tex]\log _{a} x^{b}=b \log _{a} x[/tex], the expression is written as,
[tex]\log _{8} 4+\log _{8} a+\log _{8}(b-4)-4 \log _{8} c[/tex]
Thus, the equivalent expression is log Subscript 8 Baseline 4 + log Subscript 8 Baseline a + (log Subscript 8 Baseline (b minus 4) minus 4 log Subscript 8 Baseline c)