Answer:
The total length (in units) of the biking trail is 15 units
Step-by-step explanation:
Given:
P = (-2,1)
Q = (6, 1)
R = (6,-3)
s = (9,-3)
To Find:
The total length (in units) of the biking trail = ?
Solution:
Distance between two points can be found by the
d = [tex]\sqrt{(x_2 -x_1)^2 +(y_2-y_1)^2}[/tex]--------------(1)
Step 1: Distance between PQ
Here
[tex]x_1 = -2 \\ y_1 = 1\\x_2 = 6 \\ y_2 = 1[/tex]
Substituting the values in eq(1)
PQ = [tex]\sqrt{(6 -(-2))^2 +(1-1)^2}[/tex]
PQ = [tex]\sqrt{(6 +2)^2 }[/tex]
PQ = [tex]\sqrt{8^2[/tex]
[tex]PQ = \sqrt{64[/tex]
PQ = 8
Step 2: Distance between QR
Here
[tex]x_1 = 6 \\ y_1 = 1\\x_2 = 6 \\ y_2 = -3[/tex]
Substituting the values in eq(1)
QR = [tex]\sqrt{(6 -6))^2 +((-3)- 1)^2}[/tex]
QR = [tex]\sqrt{ (-4)^2}[/tex]
QR = [tex]\sqrt{16[/tex]
QR = 4
Step 3: Distance between RS
Here
[tex]x_1 = 6 \\ y_1 = -3\\x_2 = 9 \\ y_2 = -3[/tex]
Substituting the values in eq(1)
RS= [tex]\sqrt{(9 -6))^2 +(-3 -(-3))^2}[/tex]
RS = [tex]\sqrt{ (3)^2}[/tex]
RS = [tex]\sqrt{9[/tex]
RS = 3
Step 4: Finding the total distance of the trail
The total distance of the biking trail is = PQ + QR + RS
=> 8+4+3
=> 15