Answer:
a) [tex]P(x,2x^2-5),\ Q(x+h,2(x+h)^2-5)[/tex]
b) [tex]4x+2h[/tex]
c) [tex]4x[/tex]
Step-by-step explanation:
Given the curve
[tex]y=2x^2-5[/tex]
a) If the x-coordinate of P is [tex]x[/tex], then the y-coordinate is [tex]2x^2-5,[/tex] so point P has coordinates [tex](x,2x^2-5)[/tex]
If the x-coordinate of Q is [tex]x+h[/tex], then the y-coordinate is [tex]2(x+h)^2-5[/tex] so point Q has coordinates [tex](x+h,2(x+h)^2-5)[/tex]
b) The gradient of the secant RQ is
[tex]\dfrac{y_Q-y_P}{x_Q-x_P}\\ \\=\dfrac{(2(x+h)^2-5)-(2x^2-5)}{(x+h)-x}\\ \\=\dfrac{2(x+h)^2-5-x^2+5}{x+h-x}\\ \\=\dfrac{2(x+h)^2-2x^2}{h}\\ \\=\dfrac{2x^2+4xh+2h^2-2x^2}{h}\\ \\=\dfrac{4xh+2h^2}{h}\\ \\=4x+2h[/tex]
c) If [tex]h\rightarrow 0,[/tex] then the gradient [tex]4x+2h\rightarrow 4x[/tex]