A highway curves to the left with radius of curvature of 36 m and is banked at 26, so that cars can take this curve at higher speeds. Consider a car of mass 1477 kg whose tires have a static friction coefficient 0.61 against the pavement.How fast can the car take this curve without skidding to the outside of the curve?

Respuesta :

Answer:

Explanation:

Given

radius of track [tex]r=36\ m[/tex]

inclination [tex]\theta =26^{\circ}[/tex]

mass of car [tex]m=1477\ kg[/tex]

coefficient of kinetic friction [tex]\mu =0.61[/tex]

From diagram

[tex]N\cos \theta -f_r-mg=0---1[/tex]

Where N=Normal reaction

[tex]f_r=friction[/tex]

[tex]N\cos \theta +f_r\cos \theta =\frac{mv^2}{r}---2[/tex]

[tex]f_r=\mu N----3[/tex]

From 1 2 and 3 we get  maximum velocity without skidding

[tex]v=\sqrt{gr}\times \sqrt{\frac{\tan \theta +\mu}{1-\mu \tan \theta }}[/tex]

[tex]v=\sqrt{9.8\times 36}\times \sqrt{\frac{\tan 26+0.61}{1-0.61\cdot \tan 26}}[/tex]

[tex]v=\sqrt{551.366}[/tex]

[tex]v=23.78\ m/s[/tex]

Ver imagen nuuk

Answer:

23.48 m/s

Explanation:

radius, r = 36 m

angle of inclination, θ = 26°

coefficient of friction, μ = 0.61

mass, m = 1477 kg

Let the velocity is v.

[tex]v=\sqrt{\frac{rg\left ( \mu +tan\theta  \right )}{1-\mu tan\theta }}[/tex]

[tex]v=\sqrt{\frac{36\times 9.8\left ( 0.61 +tan26  \right )}{1-0.61 tan26 }}[/tex]

v = 23.48 m/s

ACCESS MORE