Respuesta :
Answer:
Explanation:
Given
radius of track [tex]r=36\ m[/tex]
inclination [tex]\theta =26^{\circ}[/tex]
mass of car [tex]m=1477\ kg[/tex]
coefficient of kinetic friction [tex]\mu =0.61[/tex]
From diagram
[tex]N\cos \theta -f_r-mg=0---1[/tex]
Where N=Normal reaction
[tex]f_r=friction[/tex]
[tex]N\cos \theta +f_r\cos \theta =\frac{mv^2}{r}---2[/tex]
[tex]f_r=\mu N----3[/tex]
From 1 2 and 3 we get maximum velocity without skidding
[tex]v=\sqrt{gr}\times \sqrt{\frac{\tan \theta +\mu}{1-\mu \tan \theta }}[/tex]
[tex]v=\sqrt{9.8\times 36}\times \sqrt{\frac{\tan 26+0.61}{1-0.61\cdot \tan 26}}[/tex]
[tex]v=\sqrt{551.366}[/tex]
[tex]v=23.78\ m/s[/tex]

Answer:
23.48 m/s
Explanation:
radius, r = 36 m
angle of inclination, θ = 26°
coefficient of friction, μ = 0.61
mass, m = 1477 kg
Let the velocity is v.
[tex]v=\sqrt{\frac{rg\left ( \mu +tan\theta \right )}{1-\mu tan\theta }}[/tex]
[tex]v=\sqrt{\frac{36\times 9.8\left ( 0.61 +tan26 \right )}{1-0.61 tan26 }}[/tex]
v = 23.48 m/s