Given the following cumulative frequency table, what is the mean of the distribution?

Value Cumulative frequency
1 0.15
3 0.45
5 0.60
7 0.85
9 1.00

Respuesta :

Answer:

4.9

Step-by-step explanation:

Let us first find the frequency from the cumulative frequency.

Starting number is same.

To find the next number subtract the previous number from that number.

i.e first number = 0.15

Second number = 0.45 – 0.15 = 0.3

Third number = 0.60 – 0.45 = 0.15

Fourth number = 0.85 – 0.60 = 0.25

Fifth number = 1.00 – 0.85 = 0.15

Value   Frequency     Value × Frequency

   1               0.15                        0.15

   3               0.3                         0.9

   5               0.15                       0.75

   7               0.25                       1.75

   9               0.15                        1.35

Number of frequency = 1

Total value = 0.15 + 0.9 + 0.75 + 1.75 + 1.35 = 4.9

Mean = [tex]\frac{\text { Total value }}{\text { Number of frequency }}=\frac{4.9}{1}[/tex] = 4.9

The mean of the distribution is 4.9.

  • The calculation is as follows:

Here we have to determine the frequency from the cumulative frequency.

The Starting number is similar.  

Now  

To determine the next number subtract the previous number from that number.

i.e first number = 0.15

Second number = 0.45 - 0.15 = 0.3

Third number = 0.60 - 0.45 = 0.15

Fourth number = 0.85 - 0.60 = 0.25

Fifth number = 1.00 - 0.85 = 0.15

Now

Value   Frequency     Value × Frequency

   1               0.15                        0.15

   3               0.3                         0.9

   5               0.15                       0.75

   7               0.25                       1.75

   9               0.15                        1.35

Number of frequency = 1

Now

Total value should be

= 0.15 + 0.9 + 0.75 + 1.75 + 1.35

= 4.9

So, the mean is 4.9

Learn more: brainly.com/question/17429689

ACCESS MORE