Answer:
The magnitude of the velocity of the third fragment is 212.13 m/s.
Explanation:
Given that,
Speed = 100 m/s
Vertical speed of first fragment = 150 m/s
Vertical speed of second fragment = 150 m/s
We need to calculate the vertical speed of third fragment
Using conservation of momentum
[tex]P_{iy}=P_{fy}[/tex]
[tex]mv=\dfrac{m}{3}{v_{1}}+\dfrac{m}{3}v_{2}+\dfrac{m}{3}v_{3}[/tex]
Put the value into the formula
[tex]m\times100=\dfrac{m}{3}\times150+\dfrac{m}{3}\times0+\dfrac{m}{3}\times v_{y}[/tex]
[tex]\dfrac{1}{3}v_{y}=100-50[/tex]
[tex]v_{y}=150\ m/s[/tex]
We need to calculate the horizontal speed of third fragment
Using conservation of momentum
[tex]P_{iy}=P_{fy}[/tex]
[tex]mv=\dfrac{m}{3}{v_{1}}+\dfrac{m}{3}v_{2}+\dfrac{m}{3}v_{3}[/tex]
Put the value into the formula
[tex]m\times0=\dfrac{m}{3}\times0+\dfrac{m}{3}\times150+\dfrac{m}{3}v_{x}[/tex]
[tex]\dfrac{1}{3}v_{x}=-50[/tex]
[tex]v_{x}=-150\ m/s[/tex]
We need to calculate the magnitude of the velocity of the third fragment
[tex]v=\sqrt{v_{x}^2+v_{y}^2}[/tex]
Put the value into the formula
[tex]v=\sqrt{(-150)^2+(150)^2}[/tex]
[tex]v=212.13\ m/s[/tex]
Hence, The magnitude of the velocity of the third fragment is 212.13 m/s.