Answer:
Explanation:
a)
[tex]F_{AC}=\frac{1}{4\pi\epsilon _o}\dot\frac{q_Aq_C}{r^2}\\\\=(8.98\times 10^9)\times \frac{(3.15\times 10^{-4})(1.10\times 10^{-4})}{3^2}\\\\=33.88N\vec{j}[/tex]
There will be no x-component as it is acting on y-axis completely
b)
y-component will be the total force[tex]F_{AC}=33.88N\vec j[/tex] as found earlier
c)
[tex]F_{BC}=\frac{1}{4\pi\epsilon _o}\dot\frac{q_Bq_C}{r^2}\\\\=(8.98\times 10^9)\times \frac{(-6.12\times 10^{-4})(1.10\times 10^{-4})}{4^2+3^2}\\\\=23.70N(-ve)[/tex]
d)
x-component of [tex]F_{BC}=F_{BC}cos\theta\\\\=23.70(\frac{4}{5})\\\\=18.96N\vec{i}[/tex]
e)
y-component of [tex]F_{BC}=F_{BC}sin\theta\\\\=23.70(\frac{3}{5})\\\\=14.22N\vec{-j}[/tex]
f)
[tex]F_x[/tex]=(x-component of [tex]F_{AC})+(x-component of [tex]F_{BC}[/tex])[tex]=0 + 18.96\vec i=18.96\vec i[/tex]
g)
[tex]F_y=(33.88)+(-14.22)\\\\=19.66\vec {j}[/tex]
h)
[tex]F=F_x+F_y\\\\=18.96\vec i+19.66\vec j[/tex]
[tex]|F|=\sqrt{(18.96)^2+(19.66)^2}\\\\=27.31N\\\\tan\alpha=\frac{F_y}{F_x}\\\\=frac{19.66}{18.96}\\\\\alpha=46.04^o[/tex]
from +ve x axis counter clockwise.