Respuesta :
Answer:
6.41 x 10^10 m
Explanation:
Mass, M = 1.4 x 10^30 kg
Period, T = 122 days = 122 x 24 = 2928 hours = 1.054 x 10^7 second
According to the Kepler's third law
[tex]T^{2}=\frac{4\pi ^{2}}{GM}r^{3}[/tex]
where, r is the length of semi major axis
[tex]r^{3}=\frac{1.054\times 1.054\times 10^{14}\times 6.67\times 10^{-11}\times 1.4\times 10^{30}}{4\times 3.13\times 3.14}[/tex]
r = 6.41 x 10^10 m
The semi major axis of this planet's orbit is [tex]6.41*10^{-11}[/tex] m.
Given that, Time period, [tex]T=122days[/tex] , mass [tex]m=1.4*10^{30} kg[/tex]
[tex]T=122days=122*24*3600=1.054*10^{7}seconds[/tex]
From Newton's version of Kepler's 3rd law ,
[tex]T^{2}=\frac{4\pi^{2} }{Gm}r^{3}[/tex]
Where G is gravitational constant and r is semi major axis.
Value of G [tex]=6.67*10^{-11}[/tex] and [tex]\pi=3.14[/tex]
Substituting all values in above formula.
[tex](1.054*10^{7} )^{2}=\frac{4*(3.14)^{2} }{6.67*10^{-11}*1.4*10^{30} } *r^{3} \\\\r^{3}=2.63*10^{32} \\\\r=\sqrt[3]{2.63*10^{32}} \\\\r=6.41*10^{10}m[/tex]
Hence, The semi major axis of this planet's orbit is [tex]6.41*10^{-11}[/tex] m.
Learn more:
https://brainly.com/question/15380461