Respuesta :

Answer:

Therefore,

[tex]\tan A=\dfrac{11}{60}[/tex]

Step-by-step explanation:

Given:

[tex]\sin A=\dfrac{11}{61}[/tex]

A is in I Quadrant

To Find:

[tex]\tan A = ?[/tex]

Solution:

Using Identity

[tex]\sin^{2}A+\cos^{2}A=1[/tex]

Now Substitute Sin A we get

[tex](\dfrac{11}{61})^{2}+\cos^{2}A=1\\\\\cos^{2}A=1-\dfrac{121}{3721}=\dfrac{3600}{3721}\\\\\cos A=\pm\sqrt{\dfrac{3600}{3721}}\\\\\cos A=\dfrac{60}{61}[/tex]

As 'A' is in First Quadrant Cos A is Positive

Now Tan identity we have

[tex]\tan A=\dfrac{\sin A}{\cos A}[/tex]

Now Substitute Sin A and Cos A  we get

[tex]\tan A=\dfrac{\dfrac{11}{61}}{\dfrac{60}{61}}\\\\\tan A=\dfrac{11}{60}[/tex]

Therefore,

[tex]\tan A=\dfrac{11}{60}[/tex]

ACCESS MORE