Answer:
a) The proportional limit is 2.99MPa.
b) The modulus of elasticity is 0.427GPa.
C) The poisson´s ratio is 0.021
Explanation:
a) The proportional limit is the maximum stress for wich a tension bar stops acting as a linear material in a stress-strain curve. So this stress can be obtained as:
[tex]\sigma_{p}=\frac{F_{p}}{S_{o}} =\frac{5.45Kips}{\pi(2in)^2}=2.99MPa[/tex]
b) The modulus of elasticity E is the proportion between the strain and the stress in the linear section of the stress-strain curve.
[tex]\sigma=E\epsilon[/tex]
The strain in for the proportional limit is:
[tex]\epsilon_0=\frac{\Delta L}{L}=\frac{0.0035in}{0.5in}=7 \cdot 10^{-3}[/tex]
Therefore:
[tex]E=\frac{\sigma_0}{\epsilon_0} =\frac{2.99MPa}{7 \cdot 10^{-3}} =0.427GPa[/tex]
c) The Poisson´s ratio is the negative proportion between the transverse strain and axial strain.
In this case, the transverse strain is:
[tex]\epsilon_{tr0}=\frac{\Delta D}{D}=\frac{0.0003in}{2in}=1.5 \cdot 10^{-4}[/tex]
So the poisson´s ratio is:
[tex]\nu=-\frac{d\epsilon_{tr}}{d\epsilon_{l}}\approx-\frac{\epsilon_{tr}}{\epsilon_{l}}=-\frac{1.5 \cdot 10^{-4}}{-7 \cdot 10^{-3}}=0.021[/tex]