Kevin is trying to find a white sock in a drawer. He has 16 white socks, 4 brown socks, and 6 black socks. What is the probability that he pulls out a black or brown sock, puts it back and then pulls out a white sock?

Respuesta :

Answer:

[tex]Probability=\frac{40}{169}[/tex]

Step-by-step explanation:

[tex]White(W)\ socks=16\\Brown(B)\ Socks=4\\Black(Bl) Socks=6\\Total(T) Socks=26\\[/tex]

First Event: Black or brown Sock

[tex]n(B\cup Bl)=10[/tex]

[tex]P(B\cup Bl)=\frac{n(B\cup Bl)}{n(T)}=\frac{10}{26}[/tex]

Second Event: White Sock

[tex]n(W)=16\\n(T)=26\\\\P(W)=\frac{n(W)}{n(T)}=\frac{16}{26}[/tex]

These two events are independent Hence probability that first sock is black or brown and second is white[tex]=\frac{10}{26}\times \frac{16}{26}=\frac{40}{169}\approx 0.2367[/tex]

ACCESS MORE