Answer:
[tex]Probability=\frac{40}{169}[/tex]
Step-by-step explanation:
[tex]White(W)\ socks=16\\Brown(B)\ Socks=4\\Black(Bl) Socks=6\\Total(T) Socks=26\\[/tex]
First Event: Black or brown Sock
[tex]n(B\cup Bl)=10[/tex]
[tex]P(B\cup Bl)=\frac{n(B\cup Bl)}{n(T)}=\frac{10}{26}[/tex]
Second Event: White Sock
[tex]n(W)=16\\n(T)=26\\\\P(W)=\frac{n(W)}{n(T)}=\frac{16}{26}[/tex]
These two events are independent Hence probability that first sock is black or brown and second is white[tex]=\frac{10}{26}\times \frac{16}{26}=\frac{40}{169}\approx 0.2367[/tex]