Assume that a demand equation is giben by q = 7000-100p. Find the marginal revenue for the given production levels (levels of q). (Hint: Solve the demand equation for p and use R(q) = qp)

A. 1500 units (simplify answer)

B. 3500 units (simplify answer)

C. 6500 units (simplify answer)

Respuesta :

Answer:

Option B.

Step-by-step explanation:

The demand function is

[tex]q=7000-100p[/tex]

where p is price.

Solve the demand equation for p.

[tex]100p=7000-q[/tex]

[tex]p=\dfrac{7000-q}{100}[/tex]

The revenue function is

[tex]R(q)=qp[/tex]

Substitute the value of p in the above function.

[tex]R(q)=q(\dfrac{7000-q}{100})[/tex]

[tex]R(q)=\dfrac{7000q-q^2}{100}[/tex]

Differentiate with respect to q.

[tex]R'(q)=\dfrac{7000-2q}{100}[/tex]

Equate R'(q)=0,

[tex]\dfrac{7000-2q}{100}=0[/tex]

[tex]7000=2q[/tex]

Divide both sides by 2.

[tex]3500=q[/tex]

Therefore, the correct option is B.

ACCESS MORE