contestada

The magnitudes of the vectors are F = 84 N and P = 77 N. They act at angles theta = 47 deg and phi = 52 deg. Find the angle between the resultant of the two forces and the x-axis in deg. (Note: these values may be different from above!)

Respuesta :

Answer:

The angle between the resultant of the two forces and the x-axis is 56.93°.

Explanation:

Given that,

Magnitude of the vector F = 84 N

Magnitude of the vector P = 77 N

Angle for F= 47°

Angle for P = 52°

We need to calculate the resultant vector

Using formula of resultant vector

[tex]\vec{R}=\vec{F}+\vec{P}[/tex]

[tex]\vec{R}=85(\cos47i+\sin47j)+77(\cos52i+\sin52j)[/tex]

[tex]\vec{R}=85\cos47+77\cos52+85\sin47+77\sin52[/tex]

[tex]\vec{R}=105.35i+122.84j[/tex]

We need to calculate the magnitude

[tex]R=\sqrt{(105.35)^2+(122.84)^2}[/tex]

[tex]R=161.82\ N[/tex]

We need to calculate the angle between the resultant of the two forces and the x-axis

Using formula of angle

[tex]\tan\theta=\dfrac{R}{105.34}[/tex]

[tex]\theta=\tan^{-1}(\dfrac{R}{105.34})[/tex]

Put the value into the formula

[tex]\theta=\tan^{-1}(\dfrac{161.82}{105.34})[/tex]

[tex]\theta=56.93^{\circ}[/tex]

Hence, The angle between the resultant of the two forces and the x-axis is 56.93°.

Answer:

Explanation:

Force, F = 84 N at 47°

Force, P = 77 N at 52°

First write the forces in vector form

[tex]\overrightarrow{F}=84\left ( Cos47\widehat{i}+Sin47\widehat{j} \right )[/tex]

[tex]\overrightarrow{F}=57.3\widehat{i}+61.4\widehat{j}[/tex]

[tex]\overrightarrow{P}=77\left ( Cos52\widehat{i}+Sin52\widehat{j} \right )[/tex]

[tex]\overrightarrow{P}=47.4\widehat{i}+60.7\widehat{j}[/tex]

Let R be the resultant of two forces.

[tex]\overrightarrow{R} = \overrightarrow{F} + \overrightarrow{P}[/tex]

[tex]\overrightarrow{R}=(57.3+47.4)\widehat{i}+(61.4+60.7)\widehat{j}[/tex]

[tex]\overrightarrow{R}=104.7\widehat{i}+122.1\widehat{j}[/tex]

Let it makes an angle θ from X axis

[tex]tan \theta =\frac{122.1}{104.7}[/tex]

θ = 49.4°

ACCESS MORE