Respuesta :
Answer:
The angle between the resultant of the two forces and the x-axis is 56.93°.
Explanation:
Given that,
Magnitude of the vector F = 84 N
Magnitude of the vector P = 77 N
Angle for F= 47°
Angle for P = 52°
We need to calculate the resultant vector
Using formula of resultant vector
[tex]\vec{R}=\vec{F}+\vec{P}[/tex]
[tex]\vec{R}=85(\cos47i+\sin47j)+77(\cos52i+\sin52j)[/tex]
[tex]\vec{R}=85\cos47+77\cos52+85\sin47+77\sin52[/tex]
[tex]\vec{R}=105.35i+122.84j[/tex]
We need to calculate the magnitude
[tex]R=\sqrt{(105.35)^2+(122.84)^2}[/tex]
[tex]R=161.82\ N[/tex]
We need to calculate the angle between the resultant of the two forces and the x-axis
Using formula of angle
[tex]\tan\theta=\dfrac{R}{105.34}[/tex]
[tex]\theta=\tan^{-1}(\dfrac{R}{105.34})[/tex]
Put the value into the formula
[tex]\theta=\tan^{-1}(\dfrac{161.82}{105.34})[/tex]
[tex]\theta=56.93^{\circ}[/tex]
Hence, The angle between the resultant of the two forces and the x-axis is 56.93°.
Answer:
Explanation:
Force, F = 84 N at 47°
Force, P = 77 N at 52°
First write the forces in vector form
[tex]\overrightarrow{F}=84\left ( Cos47\widehat{i}+Sin47\widehat{j} \right )[/tex]
[tex]\overrightarrow{F}=57.3\widehat{i}+61.4\widehat{j}[/tex]
[tex]\overrightarrow{P}=77\left ( Cos52\widehat{i}+Sin52\widehat{j} \right )[/tex]
[tex]\overrightarrow{P}=47.4\widehat{i}+60.7\widehat{j}[/tex]
Let R be the resultant of two forces.
[tex]\overrightarrow{R} = \overrightarrow{F} + \overrightarrow{P}[/tex]
[tex]\overrightarrow{R}=(57.3+47.4)\widehat{i}+(61.4+60.7)\widehat{j}[/tex]
[tex]\overrightarrow{R}=104.7\widehat{i}+122.1\widehat{j}[/tex]
Let it makes an angle θ from X axis
[tex]tan \theta =\frac{122.1}{104.7}[/tex]
θ = 49.4°