Gragh the image of the figure after a dilation with a scale factor of 1/4 centered at (5, -5) please help

Answer:
See attached diagram
Step-by-step explanation:
Triangle ABC has vertices A(9,3), B(-7,-5) and C(-3,7).
The dilation with a scale factor of 1/4 centered at (5, -5) has the rule
[tex](x,y)\rightarrow \left(\dfrac{1}{4}x+\dfrac{15}{4},\dfrac{1}{4}y-\dfrac{15}{4}\right)[/tex]
Then
[tex]A(9,3)\rightarrow A'\left(\dfrac{1}{4}\cdot 9+\dfrac{15}{4},\dfrac{1}{4}\cdot 3-\dfrac{15}{4}\right)=A'(6,-3);[/tex]
[tex]B(-7,-5)\rightarrow B'\left(\dfrac{1}{4}\cdot (-7)+\dfrac{15}{4},\dfrac{1}{4}\cdot (-5)-\dfrac{15}{4}\right)=B'(2,-5);[/tex]
[tex]C(-3,7)\rightarrow C'\left(\dfrac{1}{4}\cdot (-3)+\dfrac{15}{4},\dfrac{1}{4}\cdot 7-\dfrac{15}{4}\right)=C'(3,-2).[/tex]