Respuesta :
Answer: The wavelength of light that can be used is 464 nm
Explanation:
We are given:
Energy of the electrons = 258 kJ/mol
This is the energy of the 1 mole of electrons
To calculate the energy of 1 electron, we divide the energy by Avogadro's number:
[tex]\text{Energy of 1 electron}=\frac{E}{N_A}[/tex]
[tex]N_A=6.022\times 10^{23}[/tex]
[tex]E=258kJ/mol=2.58\times 10^5J/mol[/tex] (Conversion factor: 1 kJ = 1000 J)
Putting values in above equation, we get:
[tex]\text{Energy of 1 electron}=\frac{2.58\times 10^5}{6.022\times 10^{23}}=4.28\times 10^{-19}J[/tex]
To calculate the energy of one photon, we use Planck's equation, which is:
[tex]E=\frac{hc}{\lambda}[/tex]
where,
h = Planck's constant = [tex]6.625\times 10^{-34}J.s[/tex]
c = speed of light = [tex]3\times 10^8m/s[/tex]
Energy of 1 electron = [tex]4.28\times 10^{-19}J[/tex]
Putting values in above equation, we get:
[tex]4.28\times 10^{-19}J=\frac{6.625\times 10^{-34}J.s\times 3\times 10^8m/s}{\lambda}\\\\\lambda=\frac{6.625\times 10^{-34}\times 3\times 10^8m/s}{4.28\times 10^{-19}}=4.64\times 10^{-7}m[/tex]
Converting this to nano meters, we use the conversion factor:
[tex]1m=10^9nm[/tex]
So, [tex]4.64\times 10^{-7}m\times \frac{10^9nm}{1m}=464nm[/tex]
Hence, the wavelength of light that can be used is 464 nm