Answer:
Her speed is 9.8 meter per second
Explanation:
Newton's second law states that acceleration (a) is related with force (F) by:
[tex]\sum\overrightarrow{F}=m\overrightarrow{a} [/tex] (1)
Here the only force acting on the firefighter is the weight F=mg so (1) is:
[tex] mg=ma[/tex]
Solving for a:
[tex]a=g [/tex]
Now with the acceleration we can use the Galileo's kinematic equation:
[tex]Vf^{2}=Vo^{2}+2a\varDelta x [/tex] (2)
With Vf the final velocity, Vo the initial velocity and Δx the displacement, because the firefighter stars from rest Vo=0 so (2) is:
[tex]Vf^{2}=2a\varDelta x [/tex]
Solving for Vf
[tex]Vf=\sqrt{2g\varDelta x}=\sqrt{2(9.81)(4.9)} [/tex]
[tex]Vf=9.8\frac{m}{s}[/tex]