Respuesta :

Answer:

[tex]V=97.6\ in^3[/tex]

Step-by-step explanation:

step 1

Find the volume of the cylinder

The volume of the cylinder is equal to

[tex]V=\pi r^{2}h[/tex]

we have

[tex]r=4/2=2\ in[/tex] ---> the radius is half the diameter

[tex]h=8\ in[/tex]

substitute

[tex]V=\pi (2)^{2}(8)\\\\V=32\pi\ in^3[/tex]

step 2

Find the volume of the cone

The volume of the cone is equal to

[tex]V=\frac{1}{3}\pi r^{2} h[/tex]

we have

we have

[tex]r=2\ in[/tex] ---> the radius is the same that the radius of the cylinder

[tex]h=0.70\ in[/tex]

substitute

[tex]V=\frac{1}{3}\pi (2)^{2} (0.70)\\\\V=0.93\pi\ in^3[/tex]

step 3

Find the volume of the plastic object

we know that

The volume of the plastic object is equal to the volume of the cylinder minus the volume of the cone

so

[tex]V=32\pi-0.93\pi=31.07\pi\ in^3[/tex]

assume

[tex]\pi=3.1416[/tex]

[tex]V=31.07(3.1416)=97.6\ in^3[/tex]

ACCESS MORE