The exponential equation is [tex]y=-6(3)^{x}[/tex]
Step-by-step explanation:
The form of the exponential function is [tex]y=a(b)^{x}[/tex] , where
∵ The exponential function passes through point (-1 , -2)
∴ x = -1 and y = -2
- Substitute them in the form of the equation
∵ [tex]y=a(b)^{x}[/tex]
∴ [tex]-2=a(b)^{-1}[/tex]
- Remember [tex]b^{-1}=\frac{1}{b}[/tex]
∴ [tex]-2=a(\frac{1}{b})[/tex]
- Multiply both sides by b
∴ -2 b = a
- Switch the two sides
∴ a = -2 b
∵ The exponential function passes through point (3 , -162)
∴ x = 3 and y = -162
- Substitute them in the form of the equation
∵ [tex]-162=a(b)^{3}[/tex]
- Substitute a by -2 b
∴ [tex]-162=-2b(b)^{3}[/tex]
- Divide both sides by -2
∴ [tex]81=b(b)^{3}[/tex]
- Remember [tex]b.b^{x}=b^{x+1}[/tex] , when we multiply same
bases we add their exponents
∵ [tex]b.b^{3}=b^{3+1}[/tex]
∴ [tex]b.b^{3}=b^{4}[/tex]
- Substitute it in the equation
∴ [tex]81=(b)^{4}[/tex]
- Take [tex]\sqrt[4]{}[/tex] for both sides
∴ b = 3
- Substitute the value of b in a = -2 b to find a
∵ a = -2 b
∴ a = -2(3)
∴ a = -6
- Substitute the values of a and b in the form of the exponential
equations above
∴ [tex]y=-6(3)^{x}[/tex]
The exponential equation is [tex]y=-6(3)^{x}[/tex]
Learn more:
You can learn more about the logarithmic function in brainly.com/question/11921476
#LearnwithBrainly