Respuesta :
Hello,
Let's assume h the heigth of the parallelogram
h/6=sin 60°==>h=√3/2*6=3√3
Area=3√3 * 12=36√3
Let's assume h the heigth of the parallelogram
h/6=sin 60°==>h=√3/2*6=3√3
Area=3√3 * 12=36√3
Answer:
Step-by-step explanation:
Consider ABCD is a parallelogram and AB=CD=6 and BC=DA=12, Let AE be the height of the parallelogram, then from ΔAED, we have
[tex]\frac{AE}{AD}=sin60^{\circ}[/tex]
⇒[tex]\frac{AE}{12}=\frac{\sqrt{3}}{2}[/tex]
⇒[tex]AE=6\sqrt{3}[/tex]
Then, the area of parallelogram=[tex]Base{\times}height[/tex]
=[tex]CD{\times}AE[/tex]
=[tex]6{\times}6\sqrt{3}[/tex]
=[tex]36\sqrt{3}sq units[/tex]
Therefore, the area of parallelogram is [tex]36\sqrt{3}sq units[/tex].
