Respuesta :

caylus
Hello,

Let's assume h the heigth of the parallelogram

h/6=sin 60°==>h=√3/2*6=3√3
Area=3√3 * 12=36√3

Answer:

Step-by-step explanation:

Consider ABCD is a parallelogram and AB=CD=6 and BC=DA=12, Let AE be the height of the parallelogram, then from ΔAED, we have

[tex]\frac{AE}{AD}=sin60^{\circ}[/tex]

⇒[tex]\frac{AE}{12}=\frac{\sqrt{3}}{2}[/tex]

⇒[tex]AE=6\sqrt{3}[/tex]

Then, the area of parallelogram=[tex]Base{\times}height[/tex]

=[tex]CD{\times}AE[/tex]

=[tex]6{\times}6\sqrt{3}[/tex]

=[tex]36\sqrt{3}sq units[/tex]

Therefore, the area of parallelogram is [tex]36\sqrt{3}sq units[/tex].

Ver imagen boffeemadrid
ACCESS MORE